
1 
 

Hydrological modeling of the Peruvian-Ecuadorian Amazon basin 

using GPM-IMERG satellite-based precipitation dataset 

 
Ricardo Zubieta1,2, Augusto Getirana3,4,  Jhan Carlo Espinoza1,2, Waldo Lavado-Casimiro5,2, Luis Aragon2  

 5 
1 Subdirección de Ciencias de la Atmósfera e Hidrósfera (SCAH), Instituto Geofísico del Perú (IGP), Lima, Peru 
2 Programa de Doctorado en Recursos Hídricos, Universidad Nacional Agraria La Molina, Peru  
3 Hydrological Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA 
4 Earth System Science Interdisciplinary Center, College Park, MD, USA  
5 Servicio Nacional de Meteorología e Hidrología (SENAMHI), Lima, Peru 10 
 

Correspondence to: R. Zubieta (ricardo.zubieta@igp.gob.pe). 

 

Abstract 

In the last two decades, rainfall estimates provided by the Tropical Rainfall Measurement Mission (TRMM) have proven 15 
applicable in hydrological studies. The Global Precipitation Measurement (GPM) mission, which provides the new generation 

of rainfall estimates, is now considered a global successor to TRMM. The usefulness of GPM data in hydrological applications, 

however, has not yet been evaluated over the Andean and Amazonian regions. This study uses GPM data provided by the 

Integrated Multi-satellite Retrievals (IMERG) (product/final run) as input to a distributed hydrological model for the Amazon 

Basin of Peru and Ecuador for a 16-month period (from March 2014 to June 2015) when all datasets are available. TRMM 20 
products (TMPA V7, TMPA RT datasets) and a gridded precipitation dataset processed from observed rainfall are used for 

comparison. The results indicate that precipitation data derived from GPM-IMERG correspond more closely to TMPA V7 

than TMPA RT datasets, but both GPM-IMERG and TMPA V7 precipitation data tend to overestimate, compared to observed 

rainfall (by 11.1% and 15.7 %, respectively). In general, GPM-IMERG, TMPA V7 and TMPA RT correlate with observed 

rainfall, with a similar number of rain events correctly detected (~20%). Statistical analysis of modeled streamflows indicates 25 
that GPM-IMERG is as useful as TMPA V7 or TMPA RT datasets in southern regions (Ucayali basin). GPM-IMERG, TMPA 

V7 and TMPA RT do not properly simulate streamflows in northern regions (Marañón and Napo basins), probably because of 

the lack of adequate rainfall estimates in northern Peru and the Ecuadorian Amazon. 
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1. Introduction 

Satellite-based precipitation data have been widely used for hydrometeorological applications, such as hydrological modeling, 

especially in data-sparse regions like the Amazon River basin [Collischonn et al, 2008; Getirana et al, 2011; Paiva et al., 2013, 

Zulkafli et al., 2014; Zubieta et al., 2015]. Rainfall is extremely variable in both space and time, particularly over regions 5 
characterized by topographic contrast, such as the western Amazon Basin [Espinoza et al., 2009; Lavado et al., 2012]. In this 

region, the Andes Mountains contribute to high spatio-temporal variability of rainfall [Laraque et al., 2007, Espinoza et al., 

2015]. To improve approximation and reduce uncertainty, detailed monitoring is needed using a high-density rain gauge 

network. Only a low-density rain gauge network is available in the Amazon basin (AB), however, which limits understanding 

of hydrological processes and hydrological modeling over the region [Getirana et al., 2011; Paiva et al., 2013]. Satellite-based 10 
datasets, uniformly distributed in both space and time, offer an alternative for modeling hydrological events. Their usefulness 

in Andean-Amazon basins and their applicability as input to hydrological models have been evaluated recently by comparing 

modeled and observed datasets. Results indicate that these datasets could be used for operational applications in some Andean-

Amazon regions [Zulkafli et al., 2014; Zubieta et al., 2015]. However, hydrological modeling using satellite-based 

precipitation data does not yield successful results in equatorial regions. This is mainly because of inadequate satellite 15 
estimates, because streamflows resulting from hydrological modeling using observed rainfall show acceptable performance in 

the Napo River basin in the equatorial region [Zubieta et al., 2015]. 

 
Hydrological modeling and forecasting are still poorly developed in the Andean and Amazonian regions. It is important to 

improve these tools, especially because of an intensification of extreme hydrological events in the Amazon basin [Gloor et al., 20 
2013], such as intense droughts in 2005 and 2010 [Marengo et al., 2008; Marengo et al., 2011; Espinoza et al., 2011] and 

severe floods in 2009, 2012 and 2014 [Espinoza et al, 2012; 2013; 2014]. Moreover, a high percentage of total annual 

precipitation can fall in just a few days, causing soil erosion and landslides [Zubieta et al., 2016]  

In the last two decades, advances in satellite technology have improved rainfall estimation in much of the world [Huffman et 

al, 2007]. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) precipitation 25 
dataset [Huffman et al, 2007] has been important for research and for many hydrological applications in Amazon regions, and 

there is consensus among studies using TMPA in Amazon regions [Collischonn et al, 2008; Getirana et al, 2011; Paiva et al., 

2013, Zulkafli et al., 2014; Zubieta et al., 2015]. The TRMM mission ended in April 8, 2015, however, after the spacecraft 

depleted its fuel reserves (https://pmm.nasa.gov/trmm/mission-end). Despite TRMM's demise, this is not a substantive issue 

for some products, such as TMPA and TMPA–RT, which are expected to run in parallel with the new Global Precipitation 30 
Measurement (GPM) satellite until mid-2017 [Huffman et al., 2015]. The GPM mission [Schwaller and Morris, 2011], 

launched in February 2014, comprises an international constellation of satellites that provide rainfall estimations with 

significant improvements in spatio-temporal resolution, compared to TMPA products. This is true of GPM products such as 

Integrated Multi-satellite Retrievals (IMERG) estimations. Recent studies highlight that the GPM-IMERG estimations can 
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adequately substitute for TMPA estimations both hydrologically and statistically, despite limited data availability [Liu, 2016; 

Tang et al., 2016].   

 

The aim of this paper is to evaluate the use of rainfall estimates from GPM-IMERG for obtaining streamflows over the Amazon 

Basin of Peru and Ecuador (ABPE) during a 16-month period (from March 2014 to June 2015) for which all datasets are 5 
available. It provides a comparative analysis of the GPM-IMERG, TMPA RT and TMPA V7 datasets and a ground-based 

precipitation dataset (PLU). PLU was developed by spatial interpolation using the Peruvian National Meteorology and 

Hydrology Service (SENAMHI) network. Each precipitation dataset was used as input for the MGB-IPH hydrological model 

[Collischonn et al., 2007], which was recently adapted to the ABPE [Zubieta et al., 2015]. 

 10 
The ABPE extends from the tropical Andes to the Peruvian Amazon, with elevations ranging up to 6,300 meters above sea 

level, a drainage area of 878, 300 km2 and a mean discharge of around ~35,500 m3/s at the Tabatinga station [Lavado et al., 

2012]. The ABPE is located in the northwestern AB (Fig. 1a), and its area corresponds to 14% of the AB. It consists mainly 

of basins such as the Ucayali basin (southern ABPE), Marañón basin (Western of the ABPE) and Napo basin (northern ABPE) 

(Fig. 1b). 15 
2. Datasets used  

GPM is an international US/Japanese Earth science mission involving NASA and JAXA, respectively. The GPM mission 

improved and expanded on TRMM. GPM and TRMM provide precipitation data derived from different passive microwave 

(PMW) sources used in IMERG and TMPA, respectively [Huffman et al. 2015], including: Sounder for Atmospheric Profiling 

of Humidity in the Intertropics by Radiometry (SAPHIR), Advanced Technology Microwave Sounder (ATMS), Atmospheric 20 
Infrared Sounder (AIRS), Cross-Track Infrared Sounder (CRIS), and TRMM Combined Instrument (TCI) algorithms (2B31). 

They also include TRMM Microwave Image (TMI, data ended on 8 Apr 2015), GPM Microwave Imager (GMI), Advanced 

Microwave Scanning Radiometer for Earth Observing Systems (AMSR-E), Special Sensor Microwave Imager/Sounder 

(SSMIS), Microwave Humidity Sounder (MHS), Special Sensor Microwave Imager (SSM/I), Advanced Microwave Sounding 

Unit (AMSU), Operational Vertical Sounder (TOVS) and microwave-adjusted merged geo-infrared (IR). The precipitation 25 
datasets used in this study are as follows: 

 

a) GPM (product IMERG-V03D) data at several levels of processing have been provided since March 2014 (GPM-IMERG 

data are available at http://pmm.nasa.gov/GPM). The input precipitation estimates are computed using raw satellite 

measurements, such as those from passive microwave sensors (TMI, AMSR-E, SSM/I, SSMIS, AMSU, MHS, SAPHIR, 30 
GMI, ATMS, TOVS, CRIS and AIRS), inter-calibrated to the GPM Combined Instrument (GCI, using GMI and Dual-

frequency Precipitation Radar, DPR) and adjusted with monthly surface precipitation gauge analysis data (where 

available). All these datasets are used to obtain the best estimate of global precipitation maps. The temporal resolution of 
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IMERG-V03D is half-hourly, and it has a 0.1-degree by 0.1-degree spatial resolution. Unlike other satellites, such as 

TRMM, GPM-IMERG can detect both light and heavy rain and snowfall. 

 

b) TMPA 3B42 version 7 is obtained from the preprocessing of data provided by different satellite-based sensors between 

1998 and April 2015, in both real and near-real time (TMPA 3b42 data are available at 5 
ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/3B42RT). The 3B42 algorithm (every three hours) combines 

precipitation estimates from TMI, AMSR, SSMIS, SSM/I, AMSU, MHS, TCI, MetOp-B and IR. After the preprocessing 

is complete, the 3-hourly multi-satellite estimations are summed for the month and combined with monthly rainfall 

obtained from Global Precipitation Climatology Centre (GPCC), which uses ground-based precipitation. The last step is 

to scale each 3-hourly rainfall estimate for the month to sum to the monthly value (for each pixel separately, 0.25-degree 10 
by 0.25-degree spatial resolution). 

 

c) TMPA RT (real time) precipitation data are related to TMPA V7, but do not include calibration measurements of rainy 

seasons, which are incorporated more than a month after the satellite data. 

(ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/3B42RT). As with TMPA V7, the final, gridded, sub-daily temporal 15 
resolution of TMPA RT is usually every three hours, with a 0.25-degree by 0.25-degree spatial resolution.  

 

d) To evaluate satellite-based datasets, a precipitation product was obtained using daily data series (PLU) from SENAMHI 

rainfall stations. We collected daily rainfall data for 202 rain stations during the selected period. Quality control based 

on the Regional Vector Method (RVM) was used to select stations having the lowest probability of errors in their data 20 

series [Hiez 1977; Brunet-Moret 1979]. Finally, 181 RVM-approved rainfall data series [distributed over 700,000 km
2
] 

were selected, with data between March 2014 and June 2015 (Fig. 1b). The area with the highest data availability covers 

around 81% of the ABPE (19% without availability is mainly located in the northern region), where the largest 

distribution of rainfall stations is in the Andean regions, rather than Amazonian regions, of the Ucayali and Huallaga 

basins (the Huallaga is a sub-basin of the Marañón basin). For comparison, both regions with and without availability of 25 
rainfall data were considered for hydrological modeling. Rainfall observations subsequently were spatially interpolated 

to a resolution of 0.1◦ × 0.1◦ by ordinary kriging, and a spherical semivariogram model was used to generate a gridded 

daily rainfall dataset. Data transformations and anisotropy were applied when necessary. This method has been used to 

interpolate environmental variables, such as rainfall in the Amazon and Andean regions (Guimberteau et al., 2012; 

Zubieta et al., 2016). To use each precipitation dataset as input to the hydrological model, sub-daily data (for example, 30 
TMPA datasets have temporal resolution of 3 hours) were rescaled to a daily time step. 
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To evaluate model results, streamflow series from the SO-HYBAM Observatory (www.ore-hybam.org) and SENAMHI 

stations for the selected period were used; these were KM105 (KM), Mejorada (ME), Chazuta (CHA), Borja (BO), Bellavista 

(BE), Lagarto (LA), Pucallpa (PU), Requena (RE), San Regis (SR), Tamshiyacu (TAM) and Tabatinga (TAB) (Fig. 1b, Table 

1). To describe climate characteristics, meteorological data from NCEP-DOE Reanalysis at surface level [Kanamitsu et al., 

2002] were collected, including relative humidity, wind speed, solar radiation, air temperature and atmospheric pressure. Basin 5 
topography is derived from the Shuttle Radar Topography Mission (SRTM, version 2). Digital thematic maps correspond to 

vegetation and soil maps of Peru (http://www.fao.org) and a vegetation type map of Ecuador 

(http://sociobosque.ambiente.gob.ec/). A soil map of Ecuador (SECS-Ecuador, http: //www.secsuelo.org) and soil and land-

use maps of Colombia (IGAC-Colombia, http://geoportal.igac.gov.co) were also considered. GPM-IMERG, TMPA V7, 

TMPA RT and PLU datasets were selected for the period corresponding to observed streamflows.  10 
 

3. Methodology 

The MGB-IPH model [Collischonn et al., 2007] has been used to simulate the hydrological behavior of the ABPE. It consists 

of modules for calculating soil water budget, evapotranspiration, flow propagation within a cell, and flow routing through the 

drainage network. A HRU (hydrological response unit) [Kouwen et al., 1993) approach is used to perform soil water balance 15 
by mean spatial classification of all areas with a similar combination of soil and land cover. The benefit of using HRUs is the 

increased accuracy in streamflow simulations at smaller scales, as they make it possible to take better advantage of high spatial 

resolution databases for hydrological modeling applications. To create HRUs, the watershed is divided into regular elements 

(cells), which are interconnected by channels. A parameter set is calculated separately for each HRU of each pixel, considering 

only one layer of soil [Collischonn et al., 2007]. The Muskingum-Cunge method is used for routing streamflows through the 20 
river network from runoff generated for different HRUs in the cells. Streamflows are adjusted for accuracy according to the 

stream reach length and slope. A detailed description of the MGB-IPH model is provided in Collischonn et al. [2007]. 

 

The comparison of precipitation datasets was performed in two steps: first, an analysis of monthly averages and detected rain 

events at different precipitation thresholds (0.1, 1, 5, 10 and 20 mm/day) was conducted over the ABPE. The analysis was 25 
performed by computing the frequency bias index (FBI), probability of detection (POD), false alarm ratio (FAR), and equitable 

threat score (ETS) (see Table 2). These are calculated from a 2 x 2 contingency matrix composed of four parameters (a, b, c, 

d), where a is the number of observed rain events correctly detected, b is the number of observed rain events not detected, c is 

the number of rainfall events detected but not observed (false alarms), and d is the sum of cases in which neither observed nor 

detected rain events occurred. FBI allows analysis of overestimation or underestimation of rain events, POD provides 30 
information about sensitivity to not-detected and detected events, FAR is a function of false alarms, while ETS indicates the 

fraction of observed and/or detected rain events that were correctly detected. Comparison of rainfall estimates (GPM-IMERG, 

TMPA RT) to PLU has been also perfomed using the Heidke Skill Score (HSS). HSS is based on the number of correctly 

http://sociobosque.ambiente.gob.ec/
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predicted data where the category with the largest probability proves  to be correct, as reflected in the formula: = 𝐶𝐶−𝐸𝐸
𝑁𝑁−𝐸𝐸

 , where 

C is the number of correct predictions, E is the number of correct predictions expected by chance and N is the total number of 

predictions. HSS = 1 refers to a perfect prediction, HSS = 0 shows no skill and HSS < 0, indicates that a prediction is worse 

than a random prediction. 

Two performance coefficients were then used to evaluate the streamflow simulations: the Nash Sutcliffe (NS) coefficient, and 5 
the difference between volumes calculated and observed (ΔV), shown in equations 1 and 2: 

 

NS = 1 −
� (Qobs(t)+Qcal(t))2nt

t=1

� (Qobs(t)−Qobs�������)2nt
t=1

                    [1] 

 

∆V = ∑�Qobs(t)�−∑�Qobs(t)�
∑�Qobs(t)�

                           [2] 10 

with Q_obs observed and Q_cal modeled streamflows. The range of efficiency lies from −∞ to 1. An efficiency of 1 (E = 1) 

corresponding to a perfect fit of modeled streamflow and observed data, while an efficiency of less than zero indicates that the 

mean value of the time series (observed) would have been a better predictor than the model. A Taylor diagram was used to 

provide a graphic summary of how closely a pattern (or a set of simulated streamflows) matches observed streamflows. In this 

diagram, the similarity among three statistical patterns is quantified according to the amplitude of their coefficient of variation 15 
(CV %), correlation coefficient and centered root-mean-square difference (RMSD %) [Taylor, 2001). This can be used to 

analyze the relative ability of hydrological models to simulate the spatial pattern of mean streamflow.  

4. Results 

 

4.1   Ground-based precipitation dataset (PLU) 20 
 

To evaluate the ability of PLU to reproduce rainfall gradients in the Andes, the relationship between annual rainfall and altitude 

for 181 stations was compared. In this area, 100 rainfall station are located above 2000 m asl; some record in excess of 1500 

mm/year, while less than 1200 mm/year is generally recorded above 3000 m asl. At lower elevations, abundant rainfall is 

associated with warm, moist air and the release of a large quantity of water vapor over the first eastern slope of the Andes; as 25 
a result, the amount of rainfall decreases with altitude (Laraque et al., 2007; Espinoza et al., 2009). A group of 15 observed 

rainfall stations located above 2000 m asl shows rainfall amount below 450 mm/year; this group cannot be adequately 

represented by PLU. Despite these differences, PLU and observed average rainfall show similar behavior at similar altitudes 

(Fig. S1). Indeed, the observed average rainfall for 181 stations shows high correlation with PLU for the 2014-2015 period (r 

= 0.77 p<0.01) (Fig. S2a). In contrast, observed average rainfall shows lower correlation with GPM-IMERG, TMPA V7 and 30 
TMPA RT (0.6, 0.56 and 0.61, respectively) (Fig. S2b-d). 



7 
 

 

4.2   Comparison of GPM-IMERG and other rainfall datasets 

Total annual rainfall over the ABPE during the selected period, using all four precipitation products, is shown in Figs. 1c-f. 

The satellite-based datasets (GPM-IMERG, TMPA V7 and TMPA RT) produce overestimates compared to observation (PLU) 

during this period (by 11.1%, 15.7% and 27.7 %, respectively). As Figs. 1c-f show, the satellite-based products present similar 5 
spatial distributions. These products are comparable to PLU over a) the Andean regions (for this paper, the Andean and 

Amazon regions are considered to be above and below 1500 meters above sea level, respectively see Fig 1b), with precipitation 

mainly between 500 and 1500 mm/year, and b) the northern Amazon regions (3.0oS-6.0oS), with precipitation between 2000 

and 3000 mm/year. There are some spatial differences over the southern Amazon regions. This can be attributed to greater 

uncertainty of the PLU dataset, however, because there are fewer rainfall stations in those regions, particularly the eastern 10 
Ucayali basin (Fig 1b).   

A comparison of monthly rainfall over the Ucayali and Huallaga river basins (at the Requena and Chazuta stations) with 

satellite-based precipitation data during the selected period is shown in Figs. 2a and 3a. In these basins, spatial distribution of 

rainfall stations is greater in the Andes region than the Amazon region. The TMPA V7 and GPM-IMERG datasets are very 

similar to each other in the Ucayali and Huallaga river basins. A monthly rainfall analysis shows that TMPA V7 and GPM-15 
IMERG tend to underestimate dry-season rainfall in the Ucayali basin (April to September) by 10.6%, compared to the PLU 

dataset (Fig. 2a). Both datasets tend to slightly overestimate wet-season rainfall, by 3%, compared to the PLU dataset. This 

overestimation is larger than that obtained by TMPA V7 or GPM-IMERG when TMPA RT is analyzed (17.5%). The GPM-

IMERG, TMPA V7 and TMPA RT datasets tend to underestimate dry- and wet-season rainfall in the Huallaga basin by 30.7%, 

28.2% and 26.2%, respectively, compared to PLU (Fig. 3a).  20 
 

Building on the average number of total days of rain events (456), the number of rain events correctly detected (~ 20%) is 

similar for each satellite precipitation dataset, compared to the PLU dataset, over the Ucayali and Huallaga basins (Figs. 2b 

and 3b). The average number of events correctly and not correctly detected is also consistent—that is, all precipitation datasets 

are clearly better at identifying low- and moderate-precipitation events (1 - 5 mm/day) than the number of high- and very low-25 
precipitation events (higher than 5 mm/day and lower than 1 mm/day respectively) (Figs. 2b-c and 3b-c). Average FBI values 

obtained for all datasets indicate a low ability to detect rain events greater than 5 mm/day, producing FBI values varying 

mainly between 1 and 2 in the Ucayali and Huallaga basins. This differs substantially from optimal conditions (~1) (Figs. 2f 

and 3f). This variation is due to the high number of rain events that were not correctly detected (~80%) (Figs. 2c and 3c). In 

general, the satellite-based datasets' limitation in representing rainfall may be due to their strong spatial variability in the 30 
Amazon-Andes region. The AB is distinguished by complex spatial distribution of rainfall because of the interactions between 

topography and large-scale humidity transport [Espinoza et al., 2015]. High or extreme precipitation events can be variable in 
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space and time, and the amount of rainfall recorded during extreme events in an Andean location may be normal in an 

Amazonian one. 

 

Average POD values for all datasets indicate a moderate probability of detection (POD less than 0.55) of rain events greater 

than 5 mm/day; this probability decreases to ~0.2 for other events in the Ucayali and Huallaga basins (Figs. 2g and 3g). The 5 
average number of events correctly and not correctly detected is also consistent—that is, all precipitation datasets are clearly 

better at identifying precipitation events of between 1 and 5 mm/day. The low probability of detection is consistent with the 

fraction of rain events that were correctly detected (ETS) (Figs. 2i and 3i). This is due to a high false alarm rate (FAR) of 

between ~0.7 and ~0.9 for rain events higher than 5 mm/day and lower than 1 mm/day for all satellite precipitation datasets in 

both the Ucayali and Huallaga basins (Figs. 2h and 3h).  10 
The limited ability to represent rainfall events of more than 5 mm/day using satellite precipitation datasets (GPM-IMERG, 

TMPA V7, TMPA RT), compared to PLU datasets (Figs. 2g and 3g), may be due to slight overestimation (in the Ucayali 

basin) or high overestimation (in the Huallaga basin), identified mainly during the wet season (Figs. 2a and 3a). Events 

exceeding 5mm/day are more likely to occur during that period. 

 15 
The HSS spatial distribution estimated from daily precipitation using each satellite dataset (GPM-IMERG, TMPA V7 and 

TMPA RT) and PLU was calculated using thresholds (0.1, 1, 5, 10 and 20 mm/day) as a reference prediction (Fig. S3a-c). In 

general, for the daily scale, the HSS score varies between 0 and 0.4, indicating low skill. The mean HSS for GPM-IMERG 

shows a moderate HSS score of around 0.4 in the Northern region (Fig. S3a). The lowest HSS values (lower than 0.2) for 

GPM-IMERG are mainly located in the Andean regions, where there are more rainfall stations than in the Amazonian regions. 20 
This could be due to strong spatial variability, which is characterized by rainfall decrease with altitude and by the leeward or 

windward position of the stations (Espinoza et al, 2009). Low scores are also observed in more scattered areas along the ABPE 

when TMPA V7 and TMPA RT are analyzed (lower than 0.15). Nevertheless, this relationship is slightly improved in the 

northern region of the Ucayali basin (~0.2). 

 25 
 

4.3   Streamflow simulation  

 

To optimize the simulation of streamflows from precipitation datasets, different parameter sets were assigned to each basin in 

the ABPE during calibration. Analysis by sub-basin is more reliable than assigning the same parameter set to the entire basin 30 
[Zubieta et al., 2015]. Based on sensitivity analysis of the MGB-IPH model [Collischonn et al., 2007], six parameters were 

selected for calibration:   𝑊𝑊𝑊𝑊i  (mm),    𝑏𝑏i  (–), 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  (mm. d−1),   𝐾𝐾𝑏𝑏𝐾𝐾𝐾𝐾i    (mm. d−1 ),    𝐶𝐶𝐶𝐶i  (–) and    𝐶𝐶𝐶𝐶i  (–), where Wm 

represents water retained in the soil, which influences the evaporation process over time; 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 𝐾𝐾𝑏𝑏𝐾𝐾𝐾𝐾 control the amount 

of water in cases in which subsurface soil and groundwater, respectively, are saturated; and 𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶 allow for adjustment of 
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retention time of flows [Collischonn, 2001]. To determine optimal parameters, an automatic calibration process was used in 

order to reduce the domain extent; a previous manual adjustment of the values was performed (Table 3). To ensure impartiality, 

parameter sets were calibrated separately for each precipitation dataset. Different domains were considered initially for each 

parameter value, and a first value, determined by manual calibration, was defined as the relative centroid for each domain. The 

MOCOM-UA multi-criteria global optimization algorithm [Yapo et al., 1998] was then used to find optimal solutions for six 5 
parameters. This process results in an effective and efficient search on the Pareto optimum space [Boyle et al., 2000]. To 

analyze the impacts on the calibrated parameters, average parameters were calculated for precipitation datasets and HRU 

(Table 4).  

 

The results of the calibration process indicate that overestimation by TMPA RT compared to observed rainfall (PLU), GPM-10 
IMERG and TMPA V7 (Fig. 2a) in several months is consistent with a mean increase in 𝑊𝑊𝑊𝑊 (+53%, +6%, +15% respectively), 

along with a predominantly mean decrease in 𝐾𝐾𝑏𝑏𝐾𝐾𝐾𝐾 (-18%, -39% and -16% respectively) and 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 (-25%, -15%, +2%) to 

achieve water balance (Table 4). Meanwhile, the overestimation by PLU compared to GPM-IMERG, TMPA V7 and TMPA 

RT (Fig. 3a) is consistent with a mean increase in 𝑊𝑊𝑊𝑊 (+33%, +38%, +34% respectively), along with a mean decrease in 

𝐾𝐾𝑏𝑏𝐾𝐾𝐾𝐾 (-30%, -28% and -38% respectively) and 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 (-17%, -16%, -17%) to achieve water balance (Table 4). 15 
 
Resulting simulated streamflows were compared to observations at 11 gauging stations (Fig. 1b, Table 5). The Ucayali and 

Huallaga basins (with greater availability of rainfall gauges) and the northern region of the ABPE (without rainfall gauge 

availability) were considered in the comparative analysis. In general, streamflows obtained from all satellite-based 

precipitation datasets show the same spatial pattern as those obtained by using PLU (Figs. 4a-b) and are similar to those 20 
obtained by Zubieta et al. [2015]. This study shows that GPM-IMERG can also be a helpful alternative source of data (similar 

to TMPA V7 and TMPA RT) for rainfall–runoff simulation in areas where conventional rainfall data is lacking, such as the 

Andean-Amazon regions of the Ucayali basin. The performance analysis over the equatorial regions does not agree well with 

observed streamflows (NS lower than 0.60), probably because of the lack of adequate rainfall estimates. Similar results are 

obtained using the TMPA V7 (Fig. 4c) and TMPA RT (Fig. 4d) satellite precipitation datasets in the hydrological modeling.  25 
 

Figs. 5a-f shows the ability of the MGB-IPH model to simulate observed streamflows using TMPA V7, TMPA RT, GPM-

IMERG and PLU precipitation datasets. Simulated streamflows match observations at six stations: a) Chazuta (CHA) b) 

Km105 (KM), c) Lagarto (LA), d) Mejorada (ME), e) Pucallpa (PU) and e) Requena (RE). The location of each dataset on the 

plot quantifies how closely the modeled streamflows match observed streamflows in terms of CV, correlation coefficient and 30 
RMSD. 

Fig. 5a shows a Taylor diagram for the Chazuta station (Huallaga basin), where modeled streamflows from the PLU dataset 

agree better with observed streamflows (r=0.84, p<0.01), RMSD error (30%) and CV of 29%) than do those using data from 
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satellite products (TMPA RT, TMPA V7 and GPM-IMERG). Analysis of the two smallest sub-basins (in the Ucayali basin) 

controlled at the KM (Fig. 5b) and ME (Fig. 5c) stations shows a correlation pattern of r= ~ 0.9 with RMSD of ~40% at KM 

and 24-40% at ME (Fig. 5b-c). These results indicate that the streamflows from PLU and TMPA RT are more similar to the 

observed streamflow series mainly at ME, with RMSD lower than 30%. The streamflow series at both KM and ME have a 

high CV (40%-80%), due to rainfall seasonality.   5 
Analysis of the largest sub-basins (in the Ucayali basin) controlled at the LA, PU and RE stations shows greater similarity 

among them for the four streamflow series obtained from precipitation datasets (Fig. 5d-f). Their significant correlation 

patterns are between 0.8 and 0.9 (r > 0.9 at the PU station), and RMSD is mainly between 20% and 25% (PU and RE). It 

should be noted that streamflow data series have a lower CV in the larger sub-basins, such as LA, with CV of 55% (drainage 

area of 191,400 km2); PU, with CV ~ of 42% (drainage area of 260,400 km2); and RE, with CV of ~40% (drainage area of 10 
350,200 km2). This could be due to weaker seasonality of rainfall in the northern part of the basin. For simulations using 

satellite-based precipitation datasets, the correlation between simulated and observed streamflows is mainly between 0.6 and 

0.9, and RMSD is relatively high (20% - 40%), suggesting that a hydrological model using these datasets can represent seasonal 

streamflows.  

The PLU dataset used as input to the hydrological model produced good results at the KM 105 (NS = 0.82 and ∆V =0.33%) 15 
(Fig. 6a), Mejorada (NS = 0.89 and ∆V = 4.2%) and Lagarto (NS = 0.74 and ∆V =-9.52%) stations in the Ucayali basin. This 

indicates its ability to represent extreme values (peak flow) with a low percentage of relative volume error (∆V < 10 %). 

However, the model's performance is low at the Pucallpa and Requena stations (NS < 0.51 and ∆V ~ 10%), where its 

predictions are not accurate. The low performance (NS < 0.60) is associated with drainage areas greater than the approximate 

threshold value of 200,000 km2 in the Ucayali basin. This could be due to greater uncertainty in the spatial distribution of 20 
rainfall in the Ucayali and Huallaga basins (northern region of the ABPE), because there are fewer rainfall stations in these 

regions. The Peruvian Andes are currently more instrumented than the Amazon regions (see Fig. 1b). 

 

To analyze the usefulness of the GPM-IMERG datasets for hydrological modeling, hydrographs for the Ucayali basin 

monitored at Km 105 station (Fig. 6b) were analyzed, with streamflows from the PLU, TMPA V7 and TMPA RT datasets also 25 
considered (Fig. 6c-d). Visual analysis of the hydrographs shows that simulated streamflows using GPM-IMERG for the 

selected period agree fairly well with observed streamflows for the KM 105 station. Although the Nash–Sutcliffe efficiency 

coefficient is generally acceptable (NS = 0.90 and ∆V = -0.25%), as shown in Fig. 6b, there is a slight overestimation of 

streamflow during the wet season, which could be due to overestimation of rainfall during that season. Other results indicate 

that the model's performance is minimally acceptable in comparison to observed streamflow at the Pucallpa (NS = 0.61, ∆V = 30 
-17.2%) (Fig. 6g), and Mejorada stations (NS = 0.61, ∆V = -18.5%). For the other stations, performance within the basin is 

less than zero.  
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Similar results were observed using TMPA V7 and TMPA RT, which reproduce the seasonal streamflow regime with similar 

performance at the KM 105 (NS =0.80 and ∆V = -2.78%, NS =0.68 and ∆V = 11.5%, respectively) (Figs. 6c-d) and Pucallpa 

(NS =0.60 and ∆V = -17.8%, NS =0.89 and ∆V = -8.3%, respectively) stations in the Ucayali basin (Figs. 6h-i).  

 

5 Concluding Remarks 5 
 

Three satellite-based precipitation datasets (GPM-IMERG, TMPA V7, and TMPA RT) were evaluated against a rain-gauge-

based dataset (PLU) obtained by spatial interpolation over the Amazon basin of Peru and Ecuador. Each dataset was used as 

input for the MGB-IPH hydrological model to simulate streamflows for a 16-month period (from March 2014 to June 2015) 

in the Ucayali, Huallaga, Marañón, Napo, Amazonas and Solimões river basins.  10 
GPM-IMERG and TMPA V7 show high temporal and spatial similarity to PLU in the Ucayali basin, but they tend to 

underestimate PLU in the Huallaga basin during the wet season of the 2014-2015 period. TMPA RT tends to overestimate for 

the Ucayali basin, compared to other precipitation datasets (PLU, TMPA V7, GPM-IMERG), while it is more similar to other 

satellite-based precipitation datasets (TMPA V7, GPM-IMERG) in the Huallaga basin. 

 15 
The GPM-IMERG dataset shows greater similarity to TMPA V7 than TMPA RT. This indicates that GPM-IMERG estimates 

are more similar to TMPA V7 both spatially and temporally when used as input for hydrological modeling over Andean and 

Amazonian basins. On average, rain event detection coefficients also suggest that GPM-IMERG, TMPA V7 and TMPA RT 

are similar to PLU in the number of rain events correctly detected (~20%) for the Ucayali and Huallaga basins. Analysis of 

rain events from pixel value comparing PLU and estimated daily rainfall (GPM-IMERG, TMPA V7 and TMPA RT) suggests 20 
a low capacity for detection. This does not imply that they are not useful for hydrological modeling, because rain events not 

correctly detected for a region or a day could be correctly detected on another day or in nearby regions, compensating for the 

estimation of rainfall amount over large regions.  
 

In general, the performance of the model when using the GPM-IMERG dataset indicates that these data are useful for 25 
estimating observed streamflows in Andean-Amazonian regions (Ucayali basin, southern regions of the Peruvian and 

Ecuadorian Amazon Basin). These results are similar to those obtained from TMPA V7 estimates by Zubieta et al. [2015] for 

the 2003-2009 period. Streamflows obtained from the GPM-IMERG, TMPA V7 and TMPA RT datasets show the same spatial 

pattern as those obtained by using PLU (low and high performance in the northern and southern regions of the ABPE, 

respectively). The ability to represent seasonal streamflows in the southern region using these four precipitation datasets is 30 
validated with statistical evaluation.  

 

It is important to note that the advantages of GPM-IMERG over TMPA-V7 for estimating streamflows, such as temporal 

resolution (30 minutes compared to 3 hours, respectively), have not yet been fully analyzed. The use of sub-daily rainfall data 
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can be potentially useful for simulating discharge in the Andean rivers, where short convective rainfall episodes are more 

relevant for hydrological variability. In this study, precipitation and streamflows were analyzed at a daily time step. Further 

flash flood modeling at smaller scales would reveal the effects of sub-diurnal differences between datasets. Errors in 

streamflow simulations are mostly associated with input data uncertainty, including rainfall, limited representations of physical 

processes in models, and parameters such as DEM and HRUs. Nevertheless, results show that it is possible to employ remote 5 
sensing data in large-scale hydrological models for streamflow simulations. 
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Table 1. Characteristics of streamflow gauging stations in the Amazon basin of Peru and Ecuador: Altitude, river, drainage 

area, annual mean streamflow (Q mean), maximum streamflow (Q max) and minimum streamflow (Q min) in m3/s. 

N Station Altitude River Area (Km 2) 

Q medio 

(m3/s) Q max (m3/s) Q min (m3/s) 

1 Km 105 (KM) 2275 Ucayali 9635 98 446 30 

2 Mejorada (ME) 2799 Ucayali 16930 186 651 76 

3 Chazuta (CHA) 226 Marañon 68685 3430 8921 936 

4 Borja (BOR) 163 Marañon 92302 6123 13250 1931 

5 Bellavista (BE) 90 Napo 100169 9338 13110 4654 

6 Lagarto (LA) 200 Ucayali 191428 6194 30460 1292 

7 Pucallpa (PU) 141 Ucayali 260418 10833 21830 3714 

8 Requena (RE) 94 Ucayali 350215 13669 20910 4088 

9 San Regis (SR) 92 Marañon 359883 20119 26610 9071 

10 Tamshiyacu (TAM) 88 Amazon 682970 37380 53840 15000 

11 Tabatinga (TAB) 62 Solimões 878141 45384 62190 19700 
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Table 2. Summary of rain event detection coefficients. 5 

Coefficient Name Equation* Range 

Optimal 

score 

FBI 

Frequency bias 

index FBI = (a+b)/(a+c) 0 - ∞ 1 

POD 

Probability of 

detection POD = a/(a+c) 0 - 1 1 

FAR False alarm ratio FAR = c / (a+c) 0 - 1 0 

ETS 

Equitable threat 

score ETS = (a+He)/(a+b+c-He) - ∞ to 1 1 

* He = (a+b). (a+c)/N where N is the total number of estimates 
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 10 
Table 3. Model parameters subjected to the process of automatic calibration for the Peruvian and Ecuadorian Amazon basin. 
 

Parameter HRU Hydrological process First guess  Domain  

Wm(mm) Shrubs, agricultural areas/not deep soils Water storage on the HRU 200 50-1200 

 Shrubs, agricultural areas/deep soils  400 50-1200 

 Forest/not deep soils  350 50-1200 

 Forest/deep soils  600 50-1200 

 Pasture/not deep soils  120 50-1200 

 Pasture/deep soils  240 50-1200 

Kint(mm/d) Shrubs, agricultural areas/not deep soils  Sub - surface flow 80 50-150 

 Shrubs, agricultural areas/deep soils  90 50-150 

 Forest/not deep soils  100 50-150 

 Forest/deep soils  120 50-150 

 Pasture/not deep soils  70 50-150 

 Pasture/deep soils  80 50-150 

Kbas(mm/d) Shrubs, agricultural areas/not deep soils Groundwater flow 30 10 - 100 

 Shrubs, agricultural areas/deep soils  50 10 - 100 

 Forest/not deep soils  70 10 - 100 

 Forest/deep soils  80 10 - 100 

 Pasture/not deep soils  55 10 - 100 

 Pasture/deep soils  70 10 - 100 

CS All Surface flow 15 0.35 - 40 

CI(-) All Sub-surface flow 120 1 - 200 

b(-) All Variable infiltration curve 0.12 0.01 - 2 
  
 

 15 
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Table 4. Values of the model mean parameters used in the Ucayali and Huallaga basins for each rainfall datasets  for the 5 
2014-2015 period. 

    UCAYALI BASIN HUALLAGA BASIN 

Parameter HRU PLU 
GPM-

IMERG 
TMPA 

V7 
TMPA 

RT PLU 
GPM-

IMERG 
TMPA 

V7 
TMPA 

RT 

Wm(mm) 
Shrubs, agricultural areas/not deep 
soils 268 351 294 373 100 60 65 60 

 Shrubs, agricultural areas/deep soils 340 472 503 597 132 102 96 99 

 Forest/not deep soils 300 408 273 344 130 101 99 96 

 Forest/deep soils 422 453 445 435 250 203 180 209 

 Pasture/not deep soils 144 350 261 321 101 60 66 59 

 Pasture/deep soils 196 400 454 496 150 120 116 121 

Kint 
Shrubs, agricultural areas/not deep 
soils 141 216 151 151 190 161 163 152 

(mm/d) Shrubs, agricultural areas/deep soils 180 236 156 163 220 189 195 198 

 Forest/not deep soils 198 123 107 108 103 162 155 160 

 Forest/deep soils 200 134 108 113 120 208 199 220 

 Pasture/not deep soils 150 110 119 122 121 160 151 150 

 Pasture/deep soils 180 113 126 128 132 193 201 190 

Kbas 
Shrubs, agricultural areas/not deep 
soils 103 121 89 93 55 70 72 80 

(mm/d) Shrubs, agricultural areas/deep soils 113 123 100 103 61 90 94 100 

 Forest/not deep soils 53 134 59 53 44 70 69 80 

 Forest/deep soils 62 25 69 62 63 90 88 100 

 Pasture/not deep soils 64 112 66 64 46 70 76 80 

 Pasture/deep soils 74 113 71 71 63 90 66 100 

CS All 18 16 17 17 2.6 2.4 2.6 2.5 

CI(-) All 112 111 118 111 111 133 135 132 

b(-) All 0.13 0.17 0.15 0.12 0.12 0.15 0.14 0.14 
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 5 

Table 5. Summary of modeling results at 11 gauging stations in the Amazon basin of Peru and Ecuador (to Tabatinga station 

in Brazil). 

N River Station 

OBSERVED 

RAINFALL 

(PLU) 

GPM-IMERG TMPA V7 TMPA RT 

NS ∆ V NS ∆ V NS ∆ V NS ∆ V 

1 Ucayali Km 105 (KM) 0.82 0.33 0.90 -0.25 0.80 -2.78 0.68 11.55 

2 Ucayali Mejorada (ME) 0.89 4.2 0.61 -18.5 0.61 -17.01 0.75 -6.49 

3 Ucayali Chazuta (CHA) 0.37 -18.27 -0.26 -31.96 -0.37 -33.51 -0.02 -29.55 

4 Ucayali Borja (BOR) -----  -----  -3.94 -47.98 -3.09 -42.39 -3.91 -47.53 

5 Ucayali Bellavista (BE) -----  -----  -2.17 -7.14 -18.24 -32.64 -20.93 -35.46 

6 Marañon Lagarto(LA) 0.74 -9.52 0.71 -0.13 0.80 -0.49 0.81 -0.18 

7 Marañon Pucallpa (PU) 0.48 -8.1 0.61 -17.2 0.60 -17.80 0.89 -8.3 

8 Marañon Requena (RE) 0.51 -10.6 -3.75 -23.59 -7.71 -33.28 -5.33 -23.32 

9 Napo San Regis (SR) -----  -----  -5.40 -24.82 -5.68 -25.59 -4.90 -24.72 

10 
Amazon 

Tamshiyacu 

(TAM) -----  -----  
-24.51 -32.22 -33.32 -37.57 -28.19 -33.19 

11 
Solimões 

Tabatinga 

(TAB) -----  -----  
-3.85 -10.28 -12.88 -19.51 -5.21 -10.74 

 

 

 10 
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 Figure 1. (a) Location of the Amazon basin in South America, (b) the Western Amazon basin, gauging and rainfall stations 

used in this work, intermittent line represents main isohypse 1500 m.a.s.l. Total annual precipitation estimated from (c) 

observed rainfall-PLU, (d) GPM-IMERG, (e) TMPA V7, (f) TMPA RT over the Amazon basin of Peru and Ecuador.   5 
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Figure 2. (a) Basin-average monthly rainfall for each precipitation dataset in the Ucayali basin up to Requena station, (b) the 5 
number of observed rain events correctly detected, (c) the number of observed rain events not correctly detected, (d) the 

number of rain events detected but not observed (false alarms), (e) the sum of cases when neither observed nor detected rain 

events occurred, (f) coefficient frequency bias index – FBI, (g) probability of detection-POD, (h) false alarm ratio – FAR, and 

(i) equitable threat score-ETS. 
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Figure 3. (a) Average monthly rainfall for each precipitation dataset in the Huallaga basin up to the Chazuta station, (b) the 

number of observed rain events correctly detected, (c) the number of observed rain events not correctly detected, (d) the 

number of rain events detected but not observed (false alarms), (e) the sum of cases when neither observed nor detected rain 5 
events occurred, (f) coefficient frequency bias index – FBI, (g) probability of detection-POD, (h) false alarm ratio – FAR, and 

(i)  equitable threat score-ETS. 
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Figure 4.  Nash–Sutcliffe efficiency coefficients map for simulations using: (a) Observed Rainfall (PLU), (b) GPM-IMERG, 

(c) TMPA V7 and (d) TMPA RT rainfall data. 
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Figure 5.  Taylor diagrams displaying a statistical comparison (coefficient of variation (%), the root mean square difference 

(%) and correlation coefficient) between observed streamflows and modeled streamflows from four precipitation datasets 

(TMPA V7 (V7), TMPA RT (RT), GPM-IMERG (GPM), observed rainfall (PLU)) for six basins controlled at stations: a) 

Chazuta (CHA), b) Km105 (KM), c) Mejorada (ME), d) Lagarto (LA), e) Pucallpa (PU), and f) Requena (RE). 5 
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Figure 6. Observed and simulated streamflow hydrographs at KM 105 station from March 12, 2014, to June 30, 2015, using 

precipitation datasets: (a) Observed rainfall, (b) GPM-IMERG, (c) TMPA V7, and (d) TMPA RT, (e) Location of the drainage 

area controlled at the KM station. Observed and simulated streamflow hydrographs at the Pucallpa station from March 12, 5 
2014, to June 30, 2015, using precipitation datasets: (f) Observed rainfall, (g) GPM-IMERG, (h) TMPA V7, (i) TMPA RT; 

(j) Location of the drainage area controlled at the Pucallpa station. 
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